of saturated NaHCO₃ solution. Extraction into CH₂Cl₂ followed by drying and concentration afforded a colorless syrup. Chromatography on silica gel (CH₂Cl₂), and recrystallization from EtOH gave 1.47 g (41%) of 8 as a colorless solid: mp 139–141 °C; 360-MHz ¹H NMR δ 3.48 (s, OCH₃), 4.33 (m, H-5), 4.67 (m, H-6 + H-6', $J_{6,6'}$ = 12.8 Hz), 4.77 (dt, H-4, $J_{3,4}$ = 9.1 Hz, $J_{H,4,F,4}$ = 51.3 Hz, $J_{4,5}$ = 10 Hz), 5.18 (m, H-2), 5.22 (d, H-1, $J_{1,2}$ = 3.5 Hz), 6.12 (dt, H-3, $J_{H,3,F,4}$ = 14.7 Hz, $J_{2,3}$ = 9 Hz), 7.35–7.63 (m, 9 H), 7.96–8.13 (m, 6 H); ¹⁹F NMR (¹H decoupled) ϕ –197.6 (s); [α]_D 119.1° (c 1.0, CHCl₃).

Anal. Calcd for $C_{28}H_{25}O_8F$: C, 66.14; H, 4.96; F, 3.74. Found: C, 65.99; H, 5.07; F, 3.73.

Acknowledgment. We thank Dr. G. S. Reddy of this department for obtaining the 360-MHz ¹H NMR spectra and for extensive decoupling experiments.

Registry No. 1, 97-30-3; **3**, 4577-39-3; **4**, 617-04-9; **6**, 84073-36-9; **7**, 3601-36-3; **8**, 84065-98-5; DAST, 38078-09-0.

Srilankenyne, a New Metabolite from the Sea Hare Aplysia oculifera

E. Dilip de Silva, Robert E. Schwartz, and Paul J. Scheuer*

Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822

James N. Shoolery

Varian Associates, Palo Alto, California 94303

Received July 1, 1982

The structure of a C_{15} -tetrasubstituted tetrahydropyran, isolated from a sea hare, was elucidated by spectral analysis.

Sea hares that feed on the red algal genus Laurencia have been a convenient source of Laurencia metabolites, predominantly sesquiterpenes and derivatives of unbranched polyunsaturated C_{15} hydrocarbons bearing oxygen and halogen functions. More than 200 metabolites have been isolated to date from Laurencia spp. and from sea hares.¹ We recently reported the structures of the bicyclic ocellenynes (**1a**,**b**) from Aplysia oculifera collected

1 a, b (Z) 3.4

in Hawaii.² The same animal from Duwa, Sri Lanka,³ contained as its principal metabolite the monocyclic srilankenyne (2), which is the subject of this report. Srilankenyne (2) is a dialkyl tetrahydropyran derivative. Surprisingly, this type has been rather uncommon among Laurencia constituents.¹

Erickson, K. L. In "Marine Natural Products"; Scheuer, P. J., Ed.;
Academic Press: New York, Vol. 5, in press.
Schulte, G. R.; Chung, M. C. H.; Scheuer, P. J. J. Org. Chem. 1981,

Table I. NMR Data of 2

	chem shift, ppm, multiplicity (J, Hz)		
С	¹³ C	¹ H	¹ H decoupling
1 2	76.32 d	2.81 d (2.2)	5.48 ^{<i>a</i>}
3	109.17 d	5.48 m	same as H-7
4	143.96 d	6.23 dt	2.9 dd (6.4, 2.2)
		(15.8, 6.8)	5.48 ch
5	30.87 t ^b	2.90 ddd	5.48 ^{<i>a</i>}
	_	(6.8, 6.4, 2.2)	6.23 d (15.8)
6	126.04 d ^b	5.48 m	same as H-7
7	128.48 d <i>^b</i>	5.48 m	2.36 ch
			2.81 s
			2.90 d (6.8)
~	01 00 b		6.23 ch
8	$31.08 t^9$	2.36 complex	3.57 d (1.7)
		AB pattern	5.48 ch
			2.72 ch
			4.05 dd (3.0, 1.75)
0	70 70 40	9 57 24	4.14 cn
9	78.73 u-	$\frac{3.37 \text{ at}}{(7.0, 1.75)}$	2.50 cm 4.05 dd (3.4.3.0)
10	60 47 d	4 05 ddd	2.05 uu (5.4, 5.0)
10	00.47 u	$(34\ 30\ 1\ 75)$	2.4 cm 2.72 dd (14.0 4.4)
		(0.1, 0.0, 1.10)	3.57 t (7.0)
11	43.85 t	2.72 ddd	was not decoupled
		(14.0, 3.0, 4.4)	
		2.40 ddd	similar to irradia-
		(14.0, 12.0, 3.4)	tion of 2.36
12	46.54 d	4.14 ddd	2.40 ch
		(12.0, 10.2, 4.4)	2.72 dd (14.0, 3.0)
19	92 02 40	2 26 444	1.54 ad (14.5, 7.9)
10	65.65 u	(10.9 84.95)	2.02 ad (14.5, 7.2)
		(10.2, 0.4, 2.0)	4 14 dd (190 4 4)
14	26 19 t	1 54 add	0.97 d (7.2)
17	20.10 0	(7.2, 8.4, 14.5)	2.02 ch^{a}
		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3.36 dd (10.2, 2.5)
		2.02 add	0.97 d 7.2
		(7.2, 2.5, 14.5)	1.54 ch
		, , , , , , , , , , , , , , , , , , , ,	3.36 dd (10.2, 8.4)
15	9.28 q	0.97 t (7.2)	1.54 dd (14.5, 8.4)
	•	. ,	2.02 dd (14.5, 2.5)

^a Changed pattern. ^b Interchangeable with closest value.

The frozen animals were blended with acetone. The filtrate from the acetone suspension was concentrated at reduced pressure to a dark brown syrup, which was partitioned between water and dichloromethane. The organic residue was chromatographed on Bio-Sil A and then by HPLC, yielding srilankenyne (2) as a colorless liquid, $[\alpha]_D$ +7.14°. A molecular ion cluster at m/z 334, 332, and 330 suggested a formula of $C_{15}H_{20}BrClO$, and IR bands at 3300 and 2100 cm⁻¹ indicated a terminal enyne function. ¹H NMR signals at δ 2.81 (H-1), 5.48 (H-3), and 6.23 (H-4), with corresponding ¹³C NMR shifts at δ 76.32 (d, C-1), 82.8 (s, C-2), 109.17 (d, C-3), and 143.96 (d, C-4) fully confirmed the envne tail of the molecule. A coupling constant of 15.8 Hz for H-4 showed the trans geometry of the 3,4-olefin. The chemical shifts of the acetylenic \equiv CH also are characteristic of a trans-enyne. Corresponding values for cis-envne are found at lower field.⁴ The ether nature of the sole oxygen atom was seen in the IR spectrum by 1100 and 1082 (sh) cm⁻¹ bands and a lack of hydroxyl and carbonyl absorption. The $^{13}\mathrm{C}$ NMR spectrum exhibited six additional low-field signals. Two of these, doublets at δ 83.83 and 78.73, were assigned to carbons bearing oxygen, two doublets at δ 60.47 and 46.54 to carbons bearing

⁽²⁾ Schulte, G. R.; Chung, M. C. H.; Scheuer, P. J. J. Org. Chem. 1981, 46, 3870–3873.

⁽³⁾ Collected by E. D. deS., Oct 1978, and identified by Professor E. Alison Kay.

⁽⁴⁾ Howard, B. M.; Fenical, W.; Hirotsu, K.; Solheim, B.; Clardy, J. Tetrahedron 1980, 36, 171-176.

Figure 1. Newman projection of 2: (a) C_8 side chain axial; (b) C_8 side chain equatorial.

halogen, and two doublets at δ 128.48 and 126.04 to an isolated olefin. The compound must therefore be monocylic. Analysis of the ¹H NMR spectrum (Table I) including decoupling experiments allowed unambiguous assignment of all protons and hence definition of a structural framework (3), which received support from

3 X₁, X₂ ■ Br or Cl

mass spectral fragments corresponding to successive losses from the parent ion of C_2H_4 , C_8H_9 , HBr, and Cl. The proton data also placed the isolated double bond at C-6. Its cis stereochemistry was deduced from the ¹³C chemical shift of the doubly allylic methylene at C-5, which resonates at δ 30.87 (or 31.08). Analogous methylenes in fatty acids are observed at δ 25.7 (cis-cis), 30.5 (cis-trans), or δ 35.7 (trans-trans).⁵ Confirmation of the C-6,7 cis stereochemistry was provided by the 200-MHz ¹H NMR spectrum of 2 in deuteriobenzene, where the cis- and trans-olefin signals do not overlap. Computer simulation of the two cis protons using a chemical shift difference of 11.5 Hz and a J value of 11 Hz resulted in a pattern that fits the observed signals. Yet to be elucidated were the positions of the halogens and the stereochemistry at the four chiral centers.

A coupling constant of J = 10.2 Hz between H-12 and H-13 denotes a trans diaxial relationship, thus demanding diequatorial configuration for X_1 and the C_2 side chain. On the other hand, H-10 lacks large coupling (J = 3.4, 3.0,1.75 Hz), thereby necessitating axial configuration for X_2 . Orientation of the C_8 side chain remains to be settled, once the identities of X_1 and X_2 are known.

The relatively large chemical shift difference between the C_{14} protons ($\Delta \delta = 0.48$) suggests interaction with a bulky group at C-12, most likely an equatorial bromine. This was proven by single-frequency on-resonance ¹H-¹³C decoupling experiments in deuteriobenzene. In that solvent the H-10 and H-12 protons are separated by 60 Hz. Irradiation of CHX₁ at 79.542438 Hz collapsed the HC-Br doublet at δ 46.5 to a singlet. Conversely, the HC-Cl doublet at δ 60.5 collapsed to a singlet when it was irradiated at 79.542378 Hz, Hence X₁ = Br and X₂ = Cl.

diated at 79.542 378 Hz, Hence $X_1 = Br$ and $X_2 = Cl$. Finally, the orientation of the C₈ side chain could be determined. In the fully coupled ¹³C NMR spectrum of **2** the C-11 methylene appears as a doublet of doublets (¹J_{CH} = 139, 128 Hz), further split by ²J_{CCH} and ³J_{CCCH} couplings of about 1 Hz. The maximum width of the pattern due to long-range coupling is about 4 Hz. Such a pattern can be obtained only if all geminal and vicinal couplings are equal to one another and are about 1 Hz. In Figure 1 it may be seen that both C-11-C-12-H-12 and C-11-C-10-H-10 angles are about 109°, which renders the ${}^{2}J_{\rm CCH}$ coupling constants about equal and small, 1–2 Hz. Vicinal coupling (${}^{3}J_{\rm CCCH}$) between carbon and hydrogen depends on the dihedral angle between CCC and CCH bonds and is governed by a Karplus relationship.⁶ If the C₈ side chain is axial (Figure 1a), this dihedral angle will be 180°, leading to an 8-Hz coupling. The resulting pattern is resolvable as a doublet. This is not observed. If, however, C₈ is equatorial (Figure 1b), a dihedral angle of 60° results, about equal to the situation with the C₂ side chain, which is known to be equatorial. Hence orientation of the C₈ side chain is equatorial.

Experimental Section

Mass spectra were obtained on a MAT 311 mass spectrometer. IR spectra were recorded on a Perkin-Elmer 467 spectrometer. A Beckman ACTA 111 spectrophotometer was used to measure UV spectra. ¹H NMR spectra were determined on a Varian XL-200 NMR spectrometer. Natural abundance ¹³C NMR spectra (noise, off-resonance, and specific proton decoupled) were recorded on a Varian FT-80 spectrometer.

Isolation. A. oculifera were collected at Duwa, Sri Lanka, at low tide from a reef where the animals were browsing. The animals were about 30 mm long and exuded a purple pigment on contact. The animals (450 g) were frozen and later homogenized with acetone. Filtration and concentration at reduced pressure gave a dark brown residue, which was partitioned between CH₂Cl₂ and H_2O . The CH_2Cl_2 solubles (1.5 g) were chromatographed on Bio-Sil A (hexane/CH₂Cl₂, 65:35) followed by HPLC (Partisil, $\begin{array}{l} \text{hexane/CH}_2\text{Cl}_2, 80\text{:}20\text{) to give 2 as a colorless liquid: } [\alpha]_{\text{D}} + 7.14^{\circ} \\ \text{(c 0.98, CH}_2\text{Cl}_2\text{)}; \lambda_{\max}^{(\text{MeOH})} 227 \text{ nm} (ϵ 13600\text{)}; IR (CH}_2\text{Cl}_2\text{)} 3300, \end{array}$ 3020, 2960, 2850, 2100, 1100, 1082 (sh), 960, 818 cm⁻¹; HRMS, m/z 332.0364, calcd for C₁₅H₂₀⁸¹Br³⁵ClO, 332.0366; MS, m/z 334, 332, 330 (M⁺), 306, 304, 302 (M⁺ - C_2H_4), 297, 295 (M⁺ - Cl), 255, 253, 251 (M⁺ - C_6H_7), 229, 227, 225 (M⁺ - C_8H_9), 215 (M⁺ -HBrCl), 201, 199, 197 (M⁺ – $C_{10}H_{13}$), 81 (C_8H_9 , base peak); ¹³C NMR (CDCl₃) and ¹H NMR (CDCl₃), see Table I; ¹H NMR (C_6D_6) δ 6.24 (1 H dt), 5.53 (1 H m), 5.34 (2 H m), 4.25 (1 H, ddd), 3.44 (1 H ddd), 3.22 (1 H ddd), 3.07 (1 H dt), 2.7-1.9 (10 H, complex), 1.67 (1 H qdd), 1.08 (1 H t).

Acknowledgment. We thank Professor E. Alison Kay for identifying the organism; the East-West Center for an open grant to E.D.deS. and for enabling his field study in Sri Lanka; and the National Science Foundation for generous financial support.

(6) Wehrli, F. W.; Wirthlin, T. "Interpretation of Carbon-13 NMR Spectra"; Heyden: London, 1976; p 56.

Stereochemistry and Carbon-13 Nuclear Magnetic Resonance Spectroscopy of the Histamine-Liberating Sesquiterpene Lactone Thapsigargin. A Modification of Horeau's Method

S. Brøgger Christensen*

Department of Chemistry BC, Royal Danish School of Pharmacy, DK-2100 Copenhagen, Denmark

Kjeld Schaumburg

Department of Chemical Physics, H. C. Ørsted Institute, DK-2100 Copenhagen, Denmark

Received July 7, 1982

Recently, thapsigargin (1) and thapsigargicin (2), the two major skin irritants of *Thapsia garganica* (Apiaceae = Umbelliferae) have been isolated,¹ and the relative con-

⁽⁵⁾ Pfeffer, P. E.; Luddy, F. E.; Unruh, J.; Shoolery, J. N. J. Am. Oil Chem. Soc. 1977, 54, 380-386.